- WEB DEVELOPMENT - WEB DESIGN - DIGITAL MARKETING - IT CONSULTING

インターネットが産声をあげて以来、技術革新は止まることを知らず、無数の関連会社やサービスの乱立を経て、IT業界は今まさに、群雄割拠の戦国時代さながらの様相を呈しています。

しかし、その複雑さのあまり、ITを活用したいと考える事業者にとっては、正しい方向性を見出すのは、闇夜に針の穴を通すようなもの。

だからこそ、私たちは、この複雑なデジタルの世界を明るく照らし、誰もが迷わず目的地にたどり着けるように送り届けることにこそ、IT企業としての真の価値があると考えているのです。

いつの日か、巡り巡って、どうかあなたのお手伝いができますように。その日のために、是非、名前だけでも覚えて帰ってください。

株式会社WORLDEST(ワールデスト)といいます。

Since the birth of the internet, technological innovation has been unstoppable, and the IT industry is now as if it were in a state of rivalry-between-warlords warring period, via upsurge of countless related companies and services.
However, because of their complexity, for businesses wanting to make use of IT, paving the right direction is like threading a needle in a dark night.
That is why we believe that the true value of being an IT company lies in illuminating this complex digital world and sending everyone on their way so that they can reach their destination without getting lost.
I wish that what goes around comes around and one day we will help you. For that day, please remember at least our name and leave.
We are WORLDEST Ltd.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import silhouette_score

class KMeans:
def __init__(self, n_clusters, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None

def initialize_centroids(self, X):
indices = np.random.choice(X.shape[0], self.n_clusters, replace=False)
self.centroids = X[indices]

def assign_clusters(self, X):
distances = np.array([np.linalg.norm(X - centroid, axis=1) for centroid in self.centroids])
return np.argmin(distances, axis=0)

def update_centroids(self, X, labels):
self.centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.n_clusters)])

def fit(self, X):
self.initialize_centroids(X)
for _ in range(self.max_iter):
labels = self.assign_clusters(X)
prev_centroids = self.centroids.copy()
self.update_centroids(X, labels)
if np.all(prev_centroids == self.centroids):
break

def predict(self, X):
return self.assign_clusters(X)

def inertia(self, X, labels):
total_inertia = 0
for i in range(self.n_clusters):
cluster_points = X[labels == i]
distances = np.linalg.norm(cluster_points - self.centroids[i], axis=1)
total_inertia += np.sum(distances ** 2)
return total_inertia

def silhouette_score(self, X, labels):
return silhouette_score(X, labels)

# Load and prepare the dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# Create and fit the KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)

# Predict and evaluate the model
predictions = kmeans.predict(X_test)
accuracy = np.mean(predictions == y_test)
print("Accuracy:", accuracy)

# Calculate and display inertia
inertia = kmeans.inertia(X_test, predictions)
print("Inertia:", inertia)

# Calculate and display silhouette score
sil_score = kmeans.silhouette_score(X_test, predictions)
print("Silhouette Score:", sil_score)

# Visualize the clustering
plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis')
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=300, c='red')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import silhouette_score

class KMeans:
def __init__(self, n_clusters, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None

def initialize_centroids(self, X):
indices = np.random.choice(X.shape[0], self.n_clusters, replace=False)
self.centroids = X[indices]

def assign_clusters(self, X):
distances = np.array([np.linalg.norm(X - centroid, axis=1) for centroid in self.centroids])
return np.argmin(distances, axis=0)

def update_centroids(self, X, labels):
self.centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.n_clusters)])

def fit(self, X):
self.initialize_centroids(X)
for _ in range(self.max_iter):
labels = self.assign_clusters(X)
prev_centroids = self.centroids.copy()
self.update_centroids(X, labels)
if np.all(prev_centroids == self.centroids):
break

def predict(self, X):
return self.assign_clusters(X)

def inertia(self, X, labels):
total_inertia = 0
for i in range(self.n_clusters):
cluster_points = X[labels == i]
distances = np.linalg.norm(cluster_points - self.centroids[i], axis=1)
total_inertia += np.sum(distances ** 2)
return total_inertia

def silhouette_score(self, X, labels):
return silhouette_score(X, labels)

# Load and prepare the dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# Create and fit the KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)

# Predict and evaluate the model
predictions = kmeans.predict(X_test)
accuracy = np.mean(predictions == y_test)
print("Accuracy:", accuracy)

# Calculate and display inertia
inertia = kmeans.inertia(X_test, predictions)
print("Inertia:", inertia)

# Calculate and display silhouette score
sil_score = kmeans.silhouette_score(X_test, predictions)
print("Silhouette Score:", sil_score)

# Visualize the clustering
plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis')
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=300, c='red')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
© WORLDEST Ltd.
import random
import time
import threading
import queue

class AnimalChat:
def __init__(self, animal_names):
self.animal_names = animal_names
self.messages = queue.Queue()
self.responses = {
'Cat': ['Meow!', 'Purr...', 'Hiss!'],
'Dog': ['Woof!', 'Bark!', 'Grr...'],
'Cow': ['Moo!', 'Moooo...', 'Mooo!'],
'Duck': ['Quack!', 'Quaaack!', 'Quack quack!']
}

def random_response(self, animal):
return random.choice(self.responses[animal])

def talk(self, animal):
while True:
message = self.random_response(animal)
self.messages.put((animal, message))
time.sleep(random.randint(2, 5))

def chat_manager(self):
while True:
if not self.messages.empty():
animal, message = self.messages.get()
print(f"{animal} says: {message}")
time.sleep(1)

# Initialize animals and chat simulation
animal_names = ['Cat', 'Dog', 'Cow', 'Duck']
chat = AnimalChat(animal_names)

# Start animal conversations in separate threads
for animal in animal_names:
t = threading.Thread(target=chat.talk, args=(animal,))
t.start()

# Start chat manager in the main thread
chat_manager_thread = threading.Thread(target=chat.chat_manager)
chat_manager_thread.start()
import random
import time
import threading
import queue

class AnimalChat:
def __init__(self, animal_names):
self.animal_names = animal_names
self.messages = queue.Queue()
self.responses = {
'Cat': ['Meow!', 'Purr...', 'Hiss!'],
'Dog': ['Woof!', 'Bark!', 'Grr...'],
'Cow': ['Moo!', 'Moooo...', 'Mooo!'],
'Duck': ['Quack!', 'Quaaack!', 'Quack quack!']
}

def random_response(self, animal):
return random.choice(self.responses[animal])

def talk(self, animal):
while True:
message = self.random_response(animal)
self.messages.put((animal, message))
time.sleep(random.randint(2, 5))

def chat_manager(self):
while True:
if not self.messages.empty():
animal, message = self.messages.get()
print(f"{animal} says: {message}")
time.sleep(1)

# Initialize animals and chat simulation
animal_names = ['Cat', 'Dog', 'Cow', 'Duck']
chat = AnimalChat(animal_names)

# Start animal conversations in separate threads
for animal in animal_names:
t = threading.Thread(target=chat.talk, args=(animal,))
t.start()

# Start chat manager in the main thread
chat_manager_thread = threading.Thread(target=chat.chat_manager)
chat_manager_thread.start()
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import classification_report

# Load dataset
df = pd.read_csv('https://example.com/dataset.csv')

# Data preprocessing
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Parameter grid for GridSearch
param_grid = {
'n_estimators': [100, 200, 300],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth': [10, 20, 30, None],
'criterion': ['gini', 'entropy']
}

# GridSearchCV for hyperparameter tuning
rf = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)

# Best parameters and model evaluation
print("Best Parameters:", grid_search.best_params_)
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
print(classification_report(y_test, y_pred))

# Feature importance
importances = best_rf.feature_importances_
indices = np.argsort(importances)[::-1]

# Plot feature importances
plt.figure()
plt.title("Feature Importances")
plt.bar(range(X.shape[1]), importances[indices], align='center')
plt.xticks(range(X.shape[1]), X.columns[indices], rotation=90)
plt.tight_layout()
plt.show()
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import classification_report

# Load dataset
df = pd.read_csv('https://example.com/dataset.csv')

# Data preprocessing
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# Parameter grid for GridSearch
param_grid = {
'n_estimators': [100, 200, 300],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth': [10, 20, 30, None],
'criterion': ['gini', 'entropy']
}

# GridSearchCV for hyperparameter tuning
rf = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)

# Best parameters and model evaluation
print("Best Parameters:", grid_search.best_params_)
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
print(classification_report(y_test, y_pred))

# Feature importance
importances = best_rf.feature_importances_
indices = np.argsort(importances)[::-1]

# Plot feature importances
plt.figure()
plt.title("Feature Importances")
plt.bar(range(X.shape[1]), importances[indices], align='center')
plt.xticks(range(X.shape[1]), X.columns[indices], rotation=90)
plt.tight_layout()
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import silhouette_score

class KMeans:
def __init__(self, n_clusters, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None

def initialize_centroids(self, X):
indices = np.random.choice(X.shape[0], self.n_clusters, replace=False)
self.centroids = X[indices]

def assign_clusters(self, X):
distances = np.array([np.linalg.norm(X - centroid, axis=1) for centroid in self.centroids])
return np.argmin(distances, axis=0)

def update_centroids(self, X, labels):
self.centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.n_clusters)])

def fit(self, X):
self.initialize_centroids(X)
for _ in range(self.max_iter):
labels = self.assign_clusters(X)
prev_centroids = self.centroids.copy()
self.update_centroids(X, labels)
if np.all(prev_centroids == self.centroids):
break

def predict(self, X):
return self.assign_clusters(X)

def inertia(self, X, labels):
total_inertia = 0
for i in range(self.n_clusters):
cluster_points = X[labels == i]
distances = np.linalg.norm(cluster_points - self.centroids[i], axis=1)
total_inertia += np.sum(distances ** 2)
return total_inertia

def silhouette_score(self, X, labels):
return silhouette_score(X, labels)

# Load and prepare the dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# Create and fit the KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)

# Predict and evaluate the model
predictions = kmeans.predict(X_test)
accuracy = np.mean(predictions == y_test)
print("Accuracy:", accuracy)

# Calculate and display inertia
inertia = kmeans.inertia(X_test, predictions)
print("Inertia:", inertia)

# Calculate and display silhouette score
sil_score = kmeans.silhouette_score(X_test, predictions)
print("Silhouette Score:", sil_score)

# Visualize the clustering
plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis')
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=300, c='red')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import silhouette_score

class KMeans:
def __init__(self, n_clusters, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None

def initialize_centroids(self, X):
indices = np.random.choice(X.shape[0], self.n_clusters, replace=False)
self.centroids = X[indices]

def assign_clusters(self, X):
distances = np.array([np.linalg.norm(X - centroid, axis=1) for centroid in self.centroids])
return np.argmin(distances, axis=0)

def update_centroids(self, X, labels):
self.centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.n_clusters)])

def fit(self, X):
self.initialize_centroids(X)
for _ in range(self.max_iter):
labels = self.assign_clusters(X)
prev_centroids = self.centroids.copy()
self.update_centroids(X, labels)
if np.all(prev_centroids == self.centroids):
break

def predict(self, X):
return self.assign_clusters(X)

def inertia(self, X, labels):
total_inertia = 0
for i in range(self.n_clusters):
cluster_points = X[labels == i]
distances = np.linalg.norm(cluster_points - self.centroids[i], axis=1)
total_inertia += np.sum(distances ** 2)
return total_inertia

def silhouette_score(self, X, labels):
return silhouette_score(X, labels)

# Load and prepare the dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# Create and fit the KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)

# Predict and evaluate the model
predictions = kmeans.predict(X_test)
accuracy = np.mean(predictions == y_test)
print("Accuracy:", accuracy)

# Calculate and display inertia
inertia = kmeans.inertia(X_test, predictions)
print("Inertia:", inertia)

# Calculate and display silhouette score
sil_score = kmeans.silhouette_score(X_test, predictions)
print("Silhouette Score:", sil_score)

# Visualize the clustering
plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis')
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=300, c='red')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import silhouette_score

class KMeans:
def __init__(self, n_clusters, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None

def initialize_centroids(self, X):
indices = np.random.choice(X.shape[0], self.n_clusters, replace=False)
self.centroids = X[indices]

def assign_clusters(self, X):
distances = np.array([np.linalg.norm(X - centroid, axis=1) for centroid in self.centroids])
return np.argmin(distances, axis=0)

def update_centroids(self, X, labels):
self.centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.n_clusters)])

def fit(self, X):
self.initialize_centroids(X)
for _ in range(self.max_iter):
labels = self.assign_clusters(X)
prev_centroids = self.centroids.copy()
self.update_centroids(X, labels)
if np.all(prev_centroids == self.centroids):
break

def predict(self, X):
return self.assign_clusters(X)

def inertia(self, X, labels):
total_inertia = 0
for i in range(self.n_clusters):
cluster_points = X[labels == i]
distances = np.linalg.norm(cluster_points - self.centroids[i], axis=1)
total_inertia += np.sum(distances ** 2)
return total_inertia

def silhouette_score(self, X, labels):
return silhouette_score(X, labels)

# Load and prepare the dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# Create and fit the KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)

# Predict and evaluate the model
predictions = kmeans.predict(X_test)
accuracy = np.mean(predictions == y_test)
print("Accuracy:", accuracy)

# Calculate and display inertia
inertia = kmeans.inertia(X_test, predictions)
print("Inertia:", inertia)

# Calculate and display silhouette score
sil_score = kmeans.silhouette_score(X_test, predictions)
print("Silhouette Score:", sil_score)

# Visualize the clustering
plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis')
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=300, c='red')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import silhouette_score

class KMeans:
def __init__(self, n_clusters, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
self.centroids = None

def initialize_centroids(self, X):
indices = np.random.choice(X.shape[0], self.n_clusters, replace=False)
self.centroids = X[indices]

def assign_clusters(self, X):
distances = np.array([np.linalg.norm(X - centroid, axis=1) for centroid in self.centroids])
return np.argmin(distances, axis=0)

def update_centroids(self, X, labels):
self.centroids = np.array([X[labels == i].mean(axis=0) for i in range(self.n_clusters)])

def fit(self, X):
self.initialize_centroids(X)
for _ in range(self.max_iter):
labels = self.assign_clusters(X)
prev_centroids = self.centroids.copy()
self.update_centroids(X, labels)
if np.all(prev_centroids == self.centroids):
break

def predict(self, X):
return self.assign_clusters(X)

def inertia(self, X, labels):
total_inertia = 0
for i in range(self.n_clusters):
cluster_points = X[labels == i]
distances = np.linalg.norm(cluster_points - self.centroids[i], axis=1)
total_inertia += np.sum(distances ** 2)
return total_inertia

def silhouette_score(self, X, labels):
return silhouette_score(X, labels)

# Load and prepare the dataset
data = load_iris()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

# Create and fit the KMeans model
kmeans = KMeans(n_clusters=3)
kmeans.fit(X_train)

# Predict and evaluate the model
predictions = kmeans.predict(X_test)
accuracy = np.mean(predictions == y_test)
print("Accuracy:", accuracy)

# Calculate and display inertia
inertia = kmeans.inertia(X_test, predictions)
print("Inertia:", inertia)

# Calculate and display silhouette score
sil_score = kmeans.silhouette_score(X_test, predictions)
print("Silhouette Score:", sil_score)

# Visualize the clustering
plt.scatter(X_test[:, 0], X_test[:, 1], c=predictions, cmap='viridis')
plt.scatter(kmeans.centroids[:, 0], kmeans.centroids[:, 1], s=300, c='red')
plt.title('KMeans Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
OUR SERVICE
OUR SERVICE
OUR
SERVICE

事業内容

  • WEBシステム開発/WEBサイト制作と、それに付帯するデジタル/ITに関わるあらゆるソリューションの提供を行っています。
    • WEBシステム開発
      WEB DEVELOPMENT
    • WEBサイト制作
      WEB DESIGN
    • デジタルマーケティング
      DIGITAL MARKETING
    • ITコンサルティング
      IT CONSULTING
    • WEBシステム開発
    • WEBサイト制作
    • デジタルマーケティング
    • ITコンサルティング
    • あらゆるビジネスニーズに合わせた高性能かつ拡張性・柔軟性に優れたWEBシステム/サービス/アプリケーションを開発します。「こんなサービスできたらな」「あんなシステムあったらいいな」を共に考え、数多ある選択肢の中から、最適なプロセスを経て、実現することで、クライアントのビジネスの成長を牽引します。
    • 情報が整理されていて、見やすい、使いやすいという前提に加え、ユーザーの体験価値(UX)を重視した、イマーシブなコンテンツ制作に取り組んでいます。情報の提供のみにとどまらず、「観ても楽しめる」作品へと昇華させることで、クライアントの商品/サービスの魅力を最大限に引き出す付加価値の高いWEBサイトを制作します。
    • オンラインでのプレゼンスを高め、ターゲットとするオーディエンスに効果的にアプローチするための戦略、既存顧客との関係を構築してLTVを高めるための施策等を企画します。広告運用、SEO/MEO、競合分析、ソーシャルメディア、各種コンテンツ制作、メール/LINEマーケティング等、その方法は多岐に渡ります。
    • あらゆるITツールを活用してクライアントの経営課題を解決するするための支援を行います。経営戦略をヒアリングし、それに沿った計画の策定や、必要なツールの導入・支援を行います。具体的には、コストの調査、システム/ツールの選定、設計から開発・導入支援、 システムの見直し等を行います。
CASE STUDY
CASE STUDY
CASE
STUDY

開発事例

  • 最新の技術と業界のベストプラクティスを活用して、あらゆるビジネスニーズに合わせた高性能かつ拡張性・柔軟性に優れたWEBシステム/サービス/アプリケーションを開発します。
    • カスタマーサポートシステム
    • スクール向け生徒管理システム
    • モール型ECプラットフォーム
    • SNSアプリケーション
    • オンライン学習システム
  • カスタマーサポートシステム

    KEY FEATURE
    • チャットボット
    • ライブチャット
    • ナレッジベースの管理
    • 満足度の評価
    企業が顧客に迅速かつ効果的なサポートを提供するためのオンラインカスタマーサポートシステムの開発です。このシステムは、チャットボットやライブチャット、FAQとナレッジベースの管理、顧客満足度の評価、フィードバック収集等を含む多様な機能を備えています。
  • スクール向け管理システム

    KEY FEATURE
    • 成績の管理
    • 出席管理と通知機能
    • 保護者向けポータル
    • 月謝の支払い管理
    教育機関が日常業務を効率的に管理し、教師、学生、保護者の間のコミュニケーションを強化するために設計された包括的なソリューションです。このシステムは、学籍管理、出席管理、成績管理、授業計画、コミュニケーションツールなど、多岐にわたる機能を提供します。
  • モール型ECプラットフォーム

    KEY FEATURE
    • 複数店舗の一元管理
    • 多様な支払い方法
    • 満足度の評価
    複数の店舗やブランドが一つのオンラインモール内で商品を販売できるように設計された総合的なソリューションです。このプラットフォームは、各店舗が独自のショップを持ちながら、統一されたユーザーエクスペリエンスを提供し、顧客が一つの場所で様々な商品を購入できる利便性を実現します。
  • SNSアプリケーション

    KEY FEATURE
    • フォロー/いいね
    • スレッド/掲示板
    • レコメンド
    • イベント作成
    特定のニーズに特化したユーザーが簡単にコミュニケーションを取り、コンテンツを共有できるソーシャルネットワーキングアプリです。このアプリは、ニュースフィード、メッセージング、グループ作成などの機能を提供します。
  • オンライン学習システム

    KEY FEATURE
    • コースの作成と管理
    • 課題管理
    • 進捗追跡と評価
    • ビデオストリーミング
    教育機関や企業向けのオンライン学習プラットフォームの開発です。このプラットフォームは、ユーザーがオンラインで簡単に学習できる環境を提供します。学習の進捗や課題の提出等を包括的に管理することで、効果的に知識を身につけることができます。
TECHNOLOGY
TECHNOLOGY
TECHNOLOGY
STUCK

技術構成

  • フロントエンド
    HTML, CSS, JavaScript, TypeScript, React, Next.js, Vue.js, Nuxt.js
    バックエンド
    PHP(Laravel), Python, TypeScript, Node.js
    データベース / ストレージ
    MySQL, PostgreSQL, Amazon RDS, Google Cloud Storage, Amazon S3
    インフラストラクチャー
    Google Cloud Platform, Amazon Web Services
  • APIの活用
    Stripe, ChatGPT, microCMS, Google Maps, Google Calendar, Shopify, LINE, PayPay, RakutenPay, freee, Twilio, deepL, Facebook, X etc.
    ECプラットフォーム
    Shopify, EC-CUBE, BASE, STORES
    業務効率化アプリ制作
    kintone, AppSheet
    WEB制作
    Wordpress, Studio, Adobe XD, Adobe Illustrator
CONPANY PROFILE
CONPANY PROFILE
COMPANY
PROFILE

会社情報

  • 商号
    株式会社WORLDEST(ワールデスト)
    英名: WORLDEST Ltd.
    設立
    令和6年4月1日
    本社所在地
    広島県福山市柳津町5-1-5
    代表取締役
    福田 博之
CONTACT FORM
CONTACT FORM
CONTACT
FORM

お問い合わせ

下記の内容でよろしいですか?

お名前

メールアドレス

お問い合わせ内容

ありがとうございます!

内容を確認して返信致しますので、少しお待ちください。

  • 01
  • 02
  • 03
  • 04
  • 05